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Abstract

Background: The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses,
including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is
hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2
virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and
genetic factors influencing COVID-19-relevant bronchial epithelial gene expression.
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Methods: We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected
individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of
smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two
asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased
susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a
suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with
host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed
expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants.

Results: We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that
are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by
the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune
response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity,
hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway
environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had
pheWAS evidence for their potential role in respiratory infections.

Conclusions: These data provide evidence that clinically relevant variation in the expression of COVID-19-related
genes is associated with host factors, environmental exposures, and likely host genetic variation.

Keywords: COVID-19, SARS-CoV-2, ACE2, eQTL, Bronchial epithelium

Background
Coronavirus disease 2019 (COVID-19), the clinical syn-
drome caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus, has led to a global cri-
sis. As a respiratory virus, SARS-CoV-2 is hypothesized to
gain entry into humans via the airway epithelium, where it
initiates a host response that leads to the subsequent clin-
ical syndrome. Despite an immense global burden of dis-
ease, the manifestations of SARS-CoV-2 infection vary
enormously, from asymptomatic infection to progressive
acute respiratory failure and death. The viral or host fea-
tures that determine the course of disease in each individ-
ual are poorly understood. Multiple clinical risk factors for
severe COVID-19 have been identified, including older
age, male sex, African American race, smoking, and co-
morbidities such as hypertension, obesity, diabetes, cardio-
vascular disease, and chronic airway diseases [1–5], as well
as host genetics [5–8].
The expression levels of genes that interact with the

SARS-CoV-2 virus or are involved in the subsequent
host response are hypothesized to be an important host
factor that could partially underlie the substantial inter-
individual variability in COVID-19 susceptibility and
progression [9–11]. To this end, we investigate genetic
and non-genetic factors influencing the expression of
human genes that have been implicated in COVID-19
(study design in Fig. 1). We analyze RNA-sequencing
(RNA-seq) data from bronchial brushing samples ob-
tained from the SPIROMICS cohort (n = 163) [12], not-
able for the high burden of COVID-19-relevant
comorbidities and rich phenotype and whole genome se-
quencing (WGS) data from the TOPMed Project [13].

For replication, we use two asthma RNA-seq data sets,
SARP (n = 156) and MAST (n = 35) as well as expression
quantitative trait loci (eQTL) data from GTEx [14]. Our
analysis provides insights of the contribution of host fac-
tors and host genetics in the expression of COVID-19-
related genes in the large airway epithelium for under-
standing inter-individual variation of COVID-19.

Methods
Study population
SubPopulations and InteRmediate Outcome Measures In
COPD Study (SPIROMICS)
SPIROMICS is a multi-site prospective cohort study in
which the main objective is to identify subpopulations of
chronic obstructive pulmonary disease (COPD) as well
as markers of disease severity to enable targeted treat-
ment and disease modification. Data were obtained from
participants who underwent research bronchoscopy
within SPIROMICS between February 1, 2012, and May
31, 2016. Participants ages 40–80 were enrolled across
four strata (never smokers, smokers without COPD,
mild/moderate COPD, and severe COPD). Full SPIRO-
MICS study details including inclusion and exclusion
criteria have been previously published [12]. Participants
enrolled in SPIROMICS who consented to a research
bronchoscopy and met all local requirements (e.g., any
laboratory tests that are required by institutional policy
to be administered prior to a bronchoscopy) were
deemed eligible. Additional exclusion criteria for the
SPIROMICS bronchoscopy sub-study [15] included his-
tory of cardiac disease or other comorbid condition se-
vere enough to significantly increase risks based on
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investigator discretion, requirement of supplementary
oxygen at rest based on arterial oxygen pressure less
than 60mmHg or arterial oxygen saturation less than
88%, severe lung function impairment defined as post-
bronchodilator forced expiratory volume in 1 s (FEV1)
less than 30% predicted, and use of anticoagulation or
antiplatelet therapies.

Severe Asthma Research Program (SARP)
SARP is a prospective multi-center cohort study with
a primary goal of improving the mechanistic and
clinical understanding of severe asthma [16]. Adult
and pediatric patients with and without asthma were
recruited to the SARP III cohort between November
1, 2012, and October 1, 2014, by seven clinical re-
search centers in the USA. The SARP protocol is an
ongoing, six-visit, 3-year, longitudinal cohort study
in which 60% of participants have severe asthma as
defined by the European Respiratory Society/Ameri-
can Thoracic Society (ERS/ATS) criteria [17]. A sub-
set of participants underwent research bronchoscopy.
Exclusion criteria included history of smoking (> 5
pack year smoking history), co-existing lung disease,
and uncontrolled comorbidities. All healthy control
subjects had to have no history of asthma and nor-
mal lung function and methacholine bronchoprovo-
cation testing. Participants with asthma had to meet
ERS/ATS criteria for asthma (bronchodilator re-
sponse to albuterol or positive methacholine

bronchoprovocation test). Asthma had to be clinic-
ally stable at the time of bronchoscopy.

Mechanisms of ASThma study (MAST)
MAST is a single-center clinical study with a primary
objective of understanding asthma biology through de-
tailed analyses of airway secretions and tissues [18]. Mild
steroid-naive asthmatics and healthy controls underwent
research bronchoscopy between April 2007 and Decem-
ber 2011. All healthy control subjects had to have no
history of asthma or allergies. Participants with asthma
had to have a positive methacholine bronchoprovocation
test and could not have used steroids in 6 weeks prior to
enrollment. Additional exclusion criteria included re-
spiratory infection within 4 weeks of enrollment and
pregnancy.

Whole genome sequencing data
Trans-Omics for Precision Medicine (TOPMed) Project
[13] data freeze 9 consist of whole genome sequences of
160,974 samples with at least 15x average coverage, in-
cluding 2710 individuals from the SPIROMICS study.
We obtained unphased genotypes for all individuals
from the SPIROMICS study at sites with at least 10x se-
quencing depth (minDP10 call set) aligned to the human
reference genome build GRCh38. Details regarding the
DNA sample handling, quality control, library construc-
tion, clustering and sequencing, read processing, and se-
quence data quality control are described on the

Fig. 1 Study design. Graphical illustration of analyses (gray boxes) carried out to study non-genetic and genetic factors affecting the expression
of COVID-19-related genes in bronchial epithelium. Input data sets for these analyses are denoted with a green box (WGS and RNA-seq) and
external data sets or data resources used in these analyses are denoted with a blue box
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TOPMed website (https://www.nhlbiwgs.org/genetic).
Variants passing all quality control (QC) filters were
retained.

Derivation of airway epithelial transcriptomic data in
SPIROMICS, SARP, and MAST
Cytological brushings of the airway epithelium were ob-
tained from lower lobe bronchi at the segmental or sub-
segmental carina. RNA was isolated with miRNeasy
extraction kits (Qiagen Inc., Valencia, CA). RNA quan-
tity and quality were evaluated using a NanoDrop Spec-
trophotometer (Thermo Fisher Scientific, Wilmington,
DE) and Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA), respectively. Library preparation with
multiplexing was performed using Illumina TruSeq
Stranded Total RNA with Ribo-zero GOLD kit (SPIRO-
MICS, SARP) or Human/Mouse/Rat kit (MAST) per
manufacturer’s protocol. Samples were sequenced using
one-hundred-fifty base-pair (SPIROMICS) or one-
hundred base-pair (SARP, MAST) paired end reads via
the Illumina HiSeq platform at the UCSF Sandler Gen-
omics core. FASTQ files were quality filtered and
aligned to the Ensembl GRCh38 genome build using
STAR [19]. Read counts were normalized using the reg-
ularized logarithm transformation function of the
DESeq2 package in R [20] and batch corrected using the
Combat function in the SVA package in R [21]. Outlying
samples with low quality (low raw read counts, high per-
centage of reads mapped to multiple loci, high percent-
age of unmapped reads) were identified by hierarchical
clustering and principal component analyses and ex-
cluded from the final data sets.

Differential expression analysis of ACE2 in relation to
host/environmental factors
Linear regression models were fitted to evaluate associa-
tions between ACE2 expression (based on normalized
count) and clinical variables in the SPIROMICS, SARP,
and MAST cohorts with and without adjustments for
covariates (see Additional file 1 for additional details).

Differential exon usage
Following alignment, we indexed and sliced the SPIRO-
MICS BAM files to include 51.6 kb of the ACE2 genomic
region (chrX:15,556,393-15,608,016 in the hg38 genome
build) using samtools [22]. GTF files were manually cu-
rated to include the three exons that contribute to differ-
ential isoform expression of ACE2 [23]. Of them, the
truncated ACE2 transcript (dACE2) that does not bind
the SARS-CoV-2 virus but is associated with an
interferon-stimulated gene response in experimental
models originates from Exon 1c. The exons were
counted using the ASpli package in R [24]. After correct-
ing for overall gene counts and differences in sequence

depth, linear models adjusting for batch were used to
analyze differences in exon usage in association with
interferon-stimulated gene signature and clinical covari-
ates. Interpretation of differential exon usage requires
consideration of the necessary adjustment for variation
in total transcript count. Thus, if overall ACE2 expres-
sion is decreased in association with an outcome, a dif-
ferential increase in one exon adjusts the expression of
that isoform away from the overall negative association,
but does not necessarily mean that the isoform is not
negatively associated with the outcome to a lesser extent.
Further details are provided in Additional file 1.

Gene set enrichment analysis of expression changes
induced by COVID-19
We built COVID-19-relevant gene sets from publicly
available differential gene expression data from partici-
pants who underwent nasal/oropharyngeal swab sam-
pling at the time of acute respiratory illness for COVID-
19 diagnosis (94 participants with COVID-19, 41 with
other viral illness, 103 with no virus identified, viruses
identified by metagenomic sequencing analysis) using
Supplementary File 1 from Mick et al. [25]. Biological
pathway gene sets were built by inputting the genes dif-
ferentially downregulated between SARS-CoV-2 infec-
tion and other viral illness (P < 0.05) into the Ingenuity
Pathway Analysis canonical pathway function. Gene set
enrichment analyses were then performed using FGSEA
[26] and the CAMERA function [27] in limma against
gene lists ranked by their log fold change differential ex-
pression in association with comorbid clinical risk fac-
tors. Barcode plots were made using CAMERA. Findings
were considered significant at P < 0.05 and false discov-
ery rate (FDR) < 0.05 if multiple corrections were neces-
sary. Additional details are provided in Additional file 1.

COVID-19-related genes
We selected 514 candidate genes implicated in COVID-
19 from six different sources: Hoffmann et al. [28], Gor-
don et al. [29], Blanco-Melo et al. [30], COVID-19 Cell
Atlas (https://www.covid19cellatlas.org/), Gassen et al.
[31], and Wang et al. [32]. Of them, 496 genes were
expressed in bronchial epithelium in the SPIROMICS
cohort. Further details are provided in Additional file 1.

Expression quantitative trait mapping
Expression quantitative trait locus (eQTL) mapping was
performed in 144 unrelated individuals from the SPIRO-
MICS bronchoscopy sub-study with WGS genotype data
from TOPMed and gene expression from bronchial epi-
thelium profiled with RNA-seq following the analysis
pipeline from the Genotype-Tissue Expression (GTEx)
Consortium [14]. In short, gene expression data was
normalized as follows: (1) read counts were normalized
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between samples using TMM [33] with edgeR [34], (2)
genes with TPM ≥ 0.1 and unnormalized read count ≥6
in at least 20% of samples were retained, and (3) expres-
sion values were transformed using rank-based inverse
normal transformation across samples.
Cis-eQTL mapping was performed using tensorQTL

[35] across 22,738 genes and 6,605,907 variants with
minor allele frequency (MAF) ≥ 0.05 and variant call rate ≥
0.9 within ± 1Mb from the transcription start site (TSS)
of the gene. As covariates in the model, we used 15 PEER
factors [36], 4 genotype principal components and sex im-
puted from genotype data. To control for multiple testing,
10,000 permutations were performed and FDR < 0.05 was
used to identify genes with statistically significant eQTLs
(eGenes). Lead cis-eQTL effect size was quantified as al-
lelic fold change (aFC) [37], ratio of expression of the
haplotype carrying the alternative allele to expression of
the haplotype carrying the reference allele of an eQTL.
Additionally, cell type interacting eQTLs (ieQTLs)

were mapped using an interaction model: p ~ g + i +
g × i + C, where p is the expression vector (normalized
as described above), g is the genotype vector, i is the
normalized cell type enrichment score from xCell
[38], g × i is the interaction term, and C is the covari-
ates matrix as used in standard eQTL mapping. Only
variants with MAF > 0.1 in the samples belonging to
the top and bottom halves of the distribution of cell
type abundance were included in the analyses. Mul-
tiple testing correction was done at the gene level
using eigenMT [39], followed by Benjamini-Hochberg
procedure across genes at FDR 5%. Additional details
are provided in Additional file 1.

Replication of cis-eQTLs and pathway analysis
We performed replication of cis-eQTLs (gene-variant
pairs) found from bronchial epithelium in 49 tissues from
the GTEx project v8 release [14] based on the proportion
of true positives [40], π1, and concordance rate, the pro-
portion of gene-variant pairs with the same allelic direc-
tion for variants with nominal P value < 1 × 10−4 in the
given GTEx tissue. Then, we analyzed the replication and
concordance measure as a function of sample size and
median cell type enrichment scores for seven cell types
[41]. Further details are provided in Additional file 1.
Also, we performed gene-level lookup in GTEx v8 and

eQTLGen Consortium [42] and used the functional pro-
filing webtool g:GOSt from g:Profiler [43] to perform
pathway analysis of the 492 significant eGenes in
SPIROMICS not tested in GTEx v8 Lung.

pheWAS of lead COVID-19 cis-eQTLs in SPIROMICS and
querying PhenoScanner
We performed a phenome-wide association study (phe-
WAS) in 1980 non-Hispanic White and 696 individuals

from other ethnic and racial groups from SPIROMICS
for the 108 lead cis-eQTLs to evaluate for phenotypic as-
sociations with spirometric measures, cell count differ-
entials, and other variables. PheWAS regression-based
models were performed using PLINK 2/0 adjusting for
principal components of ancestry, sex, body mass index
(BMI), age, and smoking pack-years. Significance thresh-
old was set for the number of eQTLs tested across phe-
notypes (P < 4.63 × 10−4).
Additionally, PhenoScanner v2 [44, 45] was used to

lookup phenotype associations of the cis-eQTL variants
from large-scale genome-wide association studies
(GWAS) with association P value < 10−5. The phenos-
canner R package (https://github.com/phenoscanner/
phenoscanner) was used to perform the queries. Add-
itional details are provided in Additional file 1.

Colocalization analysis
To assess evidence for shared causal variant of a cis-
eQTL and a GWAS trait, we used the Bayesian statistical
test for colocalization, coloc [46], with conditioning and
masking to overcome one single causal variant assump-
tion. Coloc was run on a 500-kb region centered on the
lead cis-eQTL with priors set to p1 = 10−4, p2 = 10−4,
p3 = 5 × 10−6. We used the coloc.signals() function with
mode = iterative, method =mask for GWAS traits with
linkage disequilibrium (LD) data from the 1000 Ge-
nomes Project, and method = single for the eQTLs. Pos-
terior probability for colocalization (PP4) > 0.5 was used
as evidence for colocalization (see Additional file 1 for
further details).

Results
Smoking, obesity, and hypertension are associated with
increased airway epithelial expression of functional ACE2
isoforms
We first analyzed expression levels of ACE2, the recep-
tor of the SARS-CoV-2 Spike protein that is the key host
gene for viral entry [28, 47], in relation to non-genetic
host factors (Additional file 2: Table S1). Corroborating
previous reports [11, 48–50], we found that current
smoking, when compared to non-smoking, had the lar-
gest overall effect on ACE2 expression of any phenotypic
feature studied in SPIROMICS, before and after adjust-
ments for covariates (log2 fold change (FC) = 0.30 ± 0.06,
P = 1.7 × 10−7, Fig. 2a). This effect was absent in former
smokers. In similarly adjusted models, we found no asso-
ciation between ACE2 levels and COPD (Additional file 3:
Figure S1a), nor with asthma in MAST [50] (Additional
file 3: Figure S1c). In SARP, ACE2 levels were slightly
lower in asthmatics compared to healthy controls (Add-
itional file 3: Figure S1b), which was largely driven by
decreased expression of ACE2 only in asthmatics on oral
steroids (Additional file 3: Figure S1d). African American

Kasela et al. Genome Medicine           (2021) 13:66 Page 5 of 17

https://github.com/phenoscanner/phenoscanner
https://github.com/phenoscanner/phenoscanner


race was associated with increased ACE2 expression in
both SPIROMICS and SARP, but no association after
adjusting for covariates suggests that this was due to a
higher prevalence of comorbid conditions (Additional
file 3: Figure S1e-f). However, ACE2 expression was sig-
nificantly higher across data sets in association with two
relevant comorbidities, obesity and hypertension (Fig.
2b-c, Additional file 3: Figure S2a-e, Additional file 3:
Figure S3a-b). Of note, we further found that use of
anti-hypertensives in SPIROMICS attenuates the associ-
ation between ACE2 and hypertension towards levels
seen in non-hypertensive participants (Fig. 2c). When
stratified by anti-hypertensive class, angiotensin receptor
blockers (ARBs) and diuretics, but not ACE inhibitors or
calcium channel blockers, were associated with lower
ACE2 levels, partially dependent on smoking status
(Additional file 3: Figure S3c). Counterintuitively, mod-
est decreases in ACE2 expression were seen in

SPIROMICS in association with age (log2 FC = − 0.064 ±
0.02, P = 0.005 for every 10-year age increase, Additional
file 3: Figure S4a) and male sex (log2 FC = − 0.076 ±
0.035, P = 0.03, Fig. 2d) before and after adjustments, al-
though similar associations were not seen in SARP or
MAST. Although there were no significant differences in
the above reported outcomes between males and females
in SPIROMICS, former smokers were older (9.1 ± 1.3
years compared to current smokers, P = 3.19 × 10−10) as
were participants with hypertension (4.6 ± 1.4 years, P =
0.002, Additional file 3: Figure S5). Sex and age were,
however, both adjusted for in our analyses.
As chronic airway inflammation, prevalent but het-

erogeneous in the airway diseases studied in the in-
cluded cohorts, can influence gene expression and the
host response to infections, we next studied how
stereotypic adaptive airway immune responses affect
ACE2 expression. We used our previously validated

Fig. 2 ACE2 gene expression associations in SPIROMICS. a–d Box plots showing that ACE2 log2 gene expression (x-axis) was increased in
association with current but not former smoking as compared to never smokers (a), obesity (b, validated in the MAST and SARP cohorts,
Additional file 3: Figure S2a-b), hypertension (c, adjustments include anti-hypertensive treatment, validated in SARP, Additional file 3: Figure S3a,
data not collected in MAST), and female sex (d, not replicated in either MAST or SARP, Additional file 2: Table S1A). e Scatterplots showing that
ACE2 gene expression was increased in association with higher levels of our previously validated gene signatures of the airway epithelial response
to interferon (left panel, replicated in SARP) and to IL-17 inflammation (right panel, replicated in MAST and SARP) after adjusting for smoking
status (Additional file 2: Table S1B). f Box plots showing that ACE2 Exon 1c, which contributes to the truncated ACE2 transcript was differentially
increased in association with our interferon signature while Exons 1a and 1b that contribute to the full length ACE2 transcript were not. P values
indicated by: **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05, ns = not significant in linear models adjusted for covariates. In a–d and f, the boxes
denote the interquartile range, the center line denotes the median, and whiskers denote the interquartile range × 1.5
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gene expression signatures to quantify type 2-, inter-
feron-, and IL-17-associated inflammation [18, 51,
52]. We found that ACE2 expression was associated
with increased interferon-related inflammation, as
previously reported [9], as well as IL-17-related but
not type 2 inflammation across data sets (Fig. 2e).
Corroborating the association with IL-17 inflamma-
tion, genes highly co-expressed with ACE2 expression
included genes in our IL-17 signature across data sets
(Additional file 2: Table S2).
Recent reports suggested that ACE2 induction by

interferon stimulation may be explained by expression of
a truncated ACE2 isoform (dACE2, initiated from exon
1c instead of 1a/b) that does not bind the SARS-CoV-2
spike protein [23, 53]. We first corroborated this finding,
showing that our interferon-stimulated gene signature is
associated with increased exon 1c but not exons 1a or
1b usage (Fig. 2f). We also identified an increase in exon
1a usage with age. This result suggests that although
overall ACE2 expression is decreased in association with
age, the full length transcript initiated from exon 1a is
not decreased to the same extent or is even potentially
increased with age (Additional file 3: Figure S4b). Im-
portantly, differential exon 1c usage was not associated
with any other clinical/biological outcomes of interest,
suggesting that the full length transcript is responsible
for the observed associations.
These results overall indicate that smoking, obesity,

and hypertension affect airway epithelial expression of
functional ACE2 isoforms, as previously shown for
smoking [11, 48–50]. The ACE2 association with
interferon-related inflammation appears to be explained
by the truncated version of ACE2 [23, 53]. Together,
these findings suggest that smoking, obesity, and hyper-
tension may contribute to COVID-19 severity through
an association with increased ACE2 expression, while
other risk factors such as male sex and airway disease
likely contribute via other mechanisms, corroborating
recent evidence on sex differences in the immune re-
sponse to COVID-19 [54].

Obesity, hypertension, and cardiovascular disease are
associated with a relative COVID-19-relevant
immunosuppression at the airway epithelium
As the host’s ability to mount an appropriate response
to respiratory viruses may alter susceptibility to severe
infection, we next performed gene set enrichment ana-
lyses (GSEA) to determine whether clinical risk factors
are associated with similar airway gene expression pat-
terns indicative of a diminished immune response that
we recently identified early in COVID-19 by nasal/oro-
pharyngeal swab [25]. As we previously reported, the
genes differentially expressed in association with SARS-
CoV-2 infection compared to other viruses at diagnosis

indicate a diminished innate and adaptive immune re-
sponse that may allow for unabated viral infection and
account for the long pre-symptomatic period associated
with COVID-19 [25]. We hypothesized that clinical risk
factors uniquely associated with COVID-19 severity (e.g.,
cardiovascular disease, hypertension) could predispose
patients to develop more severe disease by contributing
to this relative immunosuppression. We derived gene
sets from our previously published RNA-seq data col-
lected by nasal/oropharyngeal swab from patients at
diagnosis of acute respiratory illness; 94 had COVID-19,
41 had other viral illness, and 103 had no virus identified
by metagenomic sequencing analysis [25]. First, we gen-
erated gene sets derived from the 100 genes most up-
and downregulated in association with infection type to
use to determine if there were global similarities in gene
expression changes across data sets. For pathway ana-
lyses, we then generated COVID-19-relevant gene sets
specific to particular canonical pathways by inputting
significantly differentially expressed genes (FDR < 0.05)
between SARS-CoV-2 infection and other viral respira-
tory illness into the Ingenuity Pathway Analysis (IPA)
canonical pathway function (Additional file 2: Table S3).
GSEA was then performed using FGSEA [26] in which
these gene sets were tested against gene lists ranked by
their log fold change differential expression in associ-
ation with comorbid clinical risk factors.
We found that the genes most downregulated in as-

sociation with SARS-CoV-2 infection as compared to
other viruses were significantly enriched amongst
genes downregulated in association with obesity,
hypertension, and cardiovascular disease in SPIRO-
MICS (Fig. 3a–c). Findings for obesity were replicated
in SARP and MAST and for hypertension in SARP
(Additional file 3: Figure S6a-c, hypertension data not
collected in MAST, cardiovascular disease data not
collected in SARP or MAST). Conversely, genes up-
regulated in other viral infections (or conversely,
downregulated by SARS-CoV-2) were upregulated in
inflammatory airway conditions (current and former
smokers, COPD) (Fig. 3d-f). Aging was associated
with an enrichment in genes downregulated by SARS-
CoV-2 infection only in MAST while genes upregu-
lated with SARS-CoV-2 infection were enriched with
increasing age across the data sets (Additional file 3:
Figure S6d-f). Our results demonstrate a sharp con-
trast between SARS-CoV-2 and other viral infections,
which often trigger airway disease exacerbations by
potentiating the chronic airway inflammation associ-
ated with these diseases and smoking exposure. We
found this same pattern in association with asthma in
MAST but not when considering asthma overall in
SARP, potentially due to heterogeneity of its asthma
subjects. When considering just asthmatics with
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uncontrolled symptoms or those on inhaled compared
to no steroids (a marker of severity), we did find this
same enrichment of genes up and downregulated in
association with non-COVID viral infections (pathway
enrichment shown in Fig. 3g).
We used pathway gene set enrichment to determine

the potential biological significance of these findings.

We found across data sets that pathway gene sets de-
rived from genes downregulated by SARS-CoV-2 infec-
tion as compared to other viruses were also enriched
amongst genes downregulated in association with obes-
ity, hypertension, cardiovascular disease, and aging
(FDR < 0.05, Fig. 3g, Additional file 2: Table S4).
Enriched downregulated pathways included those related
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to pro-inflammatory cytokines such as IL-6 and IL-17 as
well as macrophage and granulocyte activation. Further-
more, pathways related to cardiovascular and metabolic
disease signaling such as atherosclerosis and diabetes
signaling were also enriched. We confirmed the enriched
findings by separately performing IPA canonical pathway
analyses on the genes differentially expressed (P < 0.05)
in association with these comorbidities, finding similar
results in these global/unsupervised analyses (Additional
file 2: Table S5). Conversely, pro-inflammatory airway
conditions such as smoking and COPD led to opposite
effects. These findings suggest that obesity, hypertension,
cardiovascular disease, and age are associated with a
relative COVID-19-relevant immunosuppression at the
airway epithelium, which, by stunting early anti-viral
host responses, could contribute to increased suscepti-
bility to SARS-CoV-2 infection and disease severity.

Host genetics has a biologically meaningful effect on the
airway epithelial expression of many COVID-19-related
genes
In order to map host genetic variants, we focused on
496 genes implicated in SARS-CoV-2 infection (Add-
itional file 2: Table S6): ACE2 and TMPRSS2, key genes
for viral entry [28]; CTSL, CTSB, and BSG, which may
have a role as alternative routes for viral entry [28, 32];
host genes with protein-protein interactions with viral
proteins [29]; differentially expressed genes as a response
to the infection in cultured airway epithelial cells [30];
genes involved in autophagy that might counteract viral
infection [31]; and other high interest genes from the
COVID-19 Cell Atlas. Our cis-eQTL mapping in SPIRO-
MICS (n = 144) identified significant (genome-wide
FDR < 0.05) genetic regulatory variation for 108 (21.8%)
of these COVID-19-related genes (Fig. 4a, Additional file
2: Table S7), with many genes also having significant
eQTLs in other tissues in GTEx [14] (Additional file 2:
Table S8).
Given the sample size, we have good power to discover

the vast majority of eQTLs with > 2-fold effect on gene
expression [14]. Many of the genes have a substantial
genetic effect on gene expression: for example, the
MERS receptor DPP4 [55] has a cis-regulatory variant
rs6727102 where the alternative allele decreases expres-
sion by 3.3-fold (Fig. 4a). In 16 genes, the genetic regula-
tory effects were > 50% of the magnitude of the
differential expression induced by SARS-CoV-2 infection
[30] (Fig. 4b). While the key genes ACE2 or TMPRSS2
did not have eQTLs in bronchial epithelium (Additional
file 3: Figure S7a-b), as previously reported [50], TMPR
SS2 has an eQTL in GTEx lung tissue. This is consistent
with the lack of phenome-wide association signals [56]
or COVID-19 GWAS association at these loci (round 3
meta-analyses by COVID-19 Host Genetics Initiative

[8]), suggesting that genetic regulation of these two
genes is unlikely to contribute to potential host genetic
effects on COVID-19. Many of the genes analyzed for
eQTLs had variation in expression associated to clinical
factors and comorbidities, with current smoking associ-
ated with the highest number of up-and downregulated
genes in association with comorbidity (Additional file 3:
Figure S8a-b). Compared to ACE2, the effect of current
smoking on the expression of TMPRSS2 was modest
(Additional file 3: Figure S7c), and as previously reported
[10], expression levels of TMPRSS2 were higher in asth-
matic than healthy controls, but not in COPD, and it de-
creased in association with steroid use (Additional file 3:
Figure S7d).
Cis-eQTLs from bronchial epithelium replicated at a

high rate in those tissues from the GTEx v8 data set [14]
that have a large sample size or high epithelial cell abun-
dance (Fig. 4c, Additional file 3: Figure S9a-b), reflecting
similarity in cell type composition manifesting in simi-
larity of regulatory variant activity [14]. However, rela-
tive to GTEx lung, our bronchial epithelium eQTLs
included genes enriched for sensory perception of chem-
ical stimulus and smell (Additional file 2: Table S9). In
total, 143 genes with eQTLs in SPIROMICS were not
tested in GTEx nor eQTLGen Consortium [42], since
bronchial epithelium is not well represented in previous
eQTL catalogs. In addition to standard cis-eQTL map-
ping, we mapped cell type interacting eQTLs [41] but
none were discovered for the COVID-19-related genes.

Regulatory variants for COVID-19-related genes as host
risk factors for COVID-19 susceptibility
To study the role of these regulatory variants in
COVID-19 risk, we first analyzed eQTLs in the chromo-
some 3 locus with a significant association with
hospitalization due to COVID-19 [8] (meta-analyses
round 3) and severe COVID-19 with respiratory failure
[5, 7]. We found no significant eQTLs in the bronchial
epithelium for any of the six genes in this locus (Add-
itional file 3: Figure S10a), suggesting that this genetic
association may be driven by other tissues or cell types
with a role in COVID-19. Moreover, these genes were
rather lowly expressed in bronchial epithelium (Add-
itional file 3: Figure S10b).
Next, given that COVID-19 GWAS still have lim-

ited power, we analyzed how regulatory variants for
COVID-19-relevant genes associate to other immune-
or respiratory-related phenotypes in large GWAS. In-
dication of these variants affecting (respiratory) infec-
tions would provide hypotheses of variants that might
play a role in COVID-19 risk and its comorbidities
(Fig. 5a). Thus, we performed a pheWAS analysis by
Phenoscanner v2 [44, 45] for the 108 lead cis-eQTLs
for COVID19-related genes and diverse set of

Kasela et al. Genome Medicine           (2021) 13:66 Page 9 of 17



phenotypes (Additional file 2: Table S10). Further-
more, we used the SPIROMICS phenotype data to
study associations for 20 phenotypes (Additional file
2: Table S11). Of these loci, 44 were associated with
at least one phenotype (P < 10−5), with expected pat-
terns—best powered GWAS traits having most

associations and shared signals for highly correlated
traits (Additional file 3: Figure S11).
We further used colocalization analysis to extract

loci where the eQTL and GWAS signals are likely to
share a causal variant, as opposed to spurious overlap,
focusing on 20 loci with associations for

ZYG11B
VAV3

UGGT2
UBAP2L

TUBGCP2
TNC

TMEM97
TMED5

TLE3
TIMM10B

TIMM10
TBKBP1

TBCA
SUN2

STX17
ST6GAL1

SNAP29
SLPI

SERPINB1
SCCPDH

SBNO1
SAAL1

S100A8
RTN4

REEP6
REEP5

RALA
RAB2A
PTBP2

PRKAA2
PPIL3

POLA2
POGLUT3

PLSCR1
PLOD2

PLEKHF2
PLEKHA5

PLAT
PITRM1
PABPC4

OAS1
NUTF2
NUP54

NUP210
NOL10

NINL
NIN

NEK9
NEDD9

NDUFAF1
NARS2

MYCBP2
MXRA5

MPHOSPH10
MMP1
MIB1

MFGE8
MEPCE

MDN1
MARK1
LARP1
ITGB1

IRF7
INTS4
IFITM3

IFI44
IDE

ICAM1
HS6ST2
HEATR3

GOLGA2
GLA
GGH

GFER
GCC2

FOXRED2
FOXO1

FGFR1OP
FBN1
FAR2

FAM49A
ETFA

ERMP1
ERC1
EMC1

EDEM3
DPP4

CXCL2
CXCL1
CTSW
CTSS
CTSO
CTSH
CTSF
CTSB

COQ8B
CEP250

C3
BSG

BPGM
ATP6V1A
ATP13A3

ASS1
AP2A2

ALG8
AKAP9
AGPS

ADRB2

−3 −2 −1 0 1 2 3 4

 eQTL effect size

C
O

V
ID

-1
9-

re
la

te
d 

ge
ne

s

−1

0

1

2

−2 −1 0 1 2 3 4

eQTL effect size 

D
E

 e
ffe

ct
 s

i z
e 

DE adj. P ≥ 0.05
DE adj. P < 0.05

SLPI

ICAM1
C3

MMP1
TNC

ρ = 0.403
P = 0.0041

ρ = 0.896
P = 3.6x10−18

Concordance rate Proportion of true positives (π1)

200

400

600

800

S
am

pl
e 

si
ze

Wilcoxon P = 9.1x10−06 Wilcoxon P = 0.15

0.64 0.66 0.68 0.5 0.6 0.7

0.00

0.25

0.50

0.75

1.00

Replication estimate

M
ed

ia
n 

 e
pi

th
el

ia
l c

el
l a

bu
nd

an
ce

Sample size

200

400

600

800

GTEx tissue

Breast - Mammary Tissue

Colon - Transverse

Esophagus - Mucosa

Kidney - Cortex

Liver

Lung

Minor Salivary Gland

Pancreas

Pituitary

Prostate

Skin - Not Sun Exposed (Suprapubic)

Skin - Sun Exposed (Lower leg)

Small Intestine - Terminal Ileum

Stomach

Thyroid

Vagina

a

b

c

S100A8

PLAT

MXRA5

ADRB2

CXCL2

BPGM

ASS1

IFITM3

NEDD9

CTSH
FAM49A

Fig. 4 Cis-eQTLs in bronchial epithelium. a Effect size measured as allelic fold change (aFC, log2) of the significant cis-eQTLs for COVID-19
candidate genes. Error bars denote 95% bootstrap confidence intervals. b Comparison of the regulatory effects and the effect of SARS-CoV-2
infection on the transcription of COVID-19 candidate genes in normal bronchial epithelial cells from Blanco-Melo et al. [30]. The graph shows
regulatory effects as aFC as in a and fold change (log2) of differential expression comparing the infected with mock-treated cells with error bars
denoting the 95% confidence interval. Genes with adjusted P value < 0.05 in the differential expression analysis are colored in black, genes with
non-significant effect are colored in gray. Highlighted genes have eQTL effect size greater than 50% of the differential expression effect size on
the absolute scale. DE—differential expression. c Replication of cis-eQTLs from bronchial epithelium in GTEx v8 using the concordance rate
(proportion of gene-variant pairs with the same direction of the effect, left panel) and proportion of true positives (π1, right panel). Upper panel
shows the effect of sample size on the replication and concordance measures quantified as Spearman correlation coefficient (ρ). Lower panel
shows the replication and concordance measures as the function of epithelial cell enrichment of the tissues measured as median epithelial cell
enrichment score from xCell. Gray dashed line denotes median enrichment score > 0.1, which classifies tissues as enriched for epithelial cells.
Wilcoxon rank sum test was used to estimate the difference in replication estimates between tissues enriched or not enriched for epithelial cells.
The 16 tissues enriched for epithelial cells are outlined in the figure legend, for the full legend see Additional file 3: Figure S9a
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hematological and respiratory system traits of which
12 colocalized (PP4 > 0.5, Fig. 5b, Additional file 2:
Table S12). In Fig. 5c, we highlight IFITM3 that is
upregulated by SARS-CoV-2 infection [30] and has an
eQTL associated with multiple blood cell traits of the
immune system [58] and neutrophil count in SPIRO-
MICS (P < 0.002). In addition, IFITM3 has a well-
characterized role in the entry of multiple viruses,

including coronaviruses [59]. Another interesting
gene, ERMP1 (Fig. 5d), has an eQTL colocalizing with
an asthma GWAS association in the UK Biobank.
ERMP1 interacts with the SARS-CoV-2 protein Orf9c
[29] and ranks highly in a genome-wide CRISPR
screen for genes required for SARS-CoV-2 infection
[60]. Also, severe asthma is a risk factor for COVID-
19 hospitalization [5] and death [61]. An eQTL for
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Fig. 5 Colocalization analysis of the regulatory variants for COVID-19-related genes. a Illustration of the concept of how regulatory variants for
COVID-19-related genes in bronchial epithelium can be possible candidates for genetic factors that affect infection or progression of the disease.
Dotted lines denote the hypothesis we are able to create by searching for the phenotypic associations of the cis-eQTLs for COVID-19-related
genes. b Heatmap of the colocalization analysis results for 20 COVID-19-related genes with eQTLs that have at least one phenotypic association
belonging to the experimental factor ontology (EFO) parent categories relevant to COVID-19 (respiratory disease, hematological or pulmonary
function measurement). Genes highlighted in bold indicate the loci involving COVID-19-relevant EFO categories with posterior probability for
colocalization (PP4) > 0.5, suggesting evidence for shared genetic causality between eQTL and GWAS trait. In the TLE locus, the nearest genome-
wide significant variant for forced expiratory volume in 1 s (FEV1) from Shrine et al. [57] is more than 1 Mb away, indicating that the association
between the variant and FEV1 might be confounded by incomplete adjustment for height. c–e Regional association plot for the GWAS signal on
the upper panel and cis-eQTL signal on the lower panel for IFITM3 (c), ERMP1 (d), and MEPCE (e) locus, where the eQTL for the corresponding
gene colocalizes with the GWAS trait relevant to COVID-19. Genomic position of the variants is shown on the x-axis and -log10(P value) of the
GWAS or eQTL association on the y-axis. The lead GWAS and eQTL variants are highlighted
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the MEPCE gene that interacts with SARS-Cov-2 pro-
tein Nsp8 [29] is associated with platelet parameters
[58] (Fig. 5e). Interestingly, platelets are hyperacti-
vated in COVID-19 [62, 63], and platelet count could
be used as a prognostic biomarker in COVID-19 pa-
tients [64–66].

Discussion
Using whole genome profiling data available from bio-
logically relevant data sets, we have generated an archive
of gene expression alterations that may contribute to
COVID-19 susceptibility and severity. Although we in-
clude an extensive analysis of ACE2 gene expression in
bronchial epithelium and isoform usage, our findings ex-
tend beyond this, providing insight into the contribution
of genetics and specific clinical risk factors in the air-
ways’ response to the SARS-CoV-2 virus.
We demonstrate replicable associations between

current smoking, obesity, hypertension, and increased
bronchial epithelial ACE2 expression, potentially facili-
tating SARS-CoV-2 entry into host cells. Obesity and
hypertension have been strongly linked with COVID-19
susceptibility and severity [1–5]. We were not well-
powered to study diabetes, but in a sputum gene expres-
sion study, we did find an association between diabetes
and increased ACE2 expression [67]. Together, this work
suggests that one mechanism by which diseases associ-
ated with the metabolic syndrome are uniquely suscep-
tible to COVID-19 is through increased ACE2
expression. Although ACE2 interacts with angiotensin 2
[68], we did not find that renin-angiotensin system-
modifying drugs increased ACE2 expression. In fact, al-
though our sample size was small, our data suggests that
angiotensin receptor blockers are associated with lower
ACE2 expression levels in smokers.
Although we observed that the largest increases in

ACE2 expression were amongst current smokers, active
smoking has not been identified as one of the largest risk
factors for COVID-19 [1–5]. Early reports suggested a
lower prevalence of smoking amongst patients with
COVID-19 as compared to the general population. How-
ever, these reports have been debunked as confounded
and inappropriately designed based on the flawed as-
sumption that individuals with symptomatic COVID-19
reflect the general population when they are actually
older with more comorbidities [69]. Well-adjusted stud-
ies in COVID-19 have shown that current smoking is in-
deed associated with increased disease severity [70, 71].
Nonetheless, current smoking does not appear to be the
biggest risk factor for developing severe COVID-19 dis-
ease in large clinical studies, and thus mechanisms be-
yond ACE2 receptor binding of the virus must be
explored.

We find evidence that the truncated dACE2 transcript
is present in the bronchial epithelium and correlated
with the expression of known interferon stimulated
genes (ISGs). However, it does not appear to account for
the observed clinical associations with overall ACE2 ex-
pression. The functional role for dACE2 is not currently
known although it does not appear to bind SARS-CoV-2
[23, 53]. However, others have speculated [23] that dur-
ing viral infections when ISGs are stimulated, dACE2
may act as a dummy receptor for other ACE2 ligands
(e.g., microRNA-200c-3p) that if bound to ACE2 would
lead to internalization of the ACE2-ligand complex and
functional depletion of ACE2. Thus, dACE2 may keep
ACE2 levels high during infection. Our observations sug-
gest that it is, however, the full length transcript and not
this truncated isoform that is associated with clinical risk
factors.
It is likely that much of the inter-individual variation

in COVID-19 is driven by a more complex molecular re-
sponse to the virus in the airway than expression of
ACE2 alone. This supposition is supported by our results
demonstrating that obesity, hypertension, and cardiovas-
cular comorbidities, as well as aging, are associated with
a downregulation of mucosal immune response path-
ways similar to that seen in early SARS-CoV-2 infection
in comparison to other viral infections. Together with
clinical data and Mendelian randomization analyses of
the causal role of smoking and BMI on severe COVID-
19 [72], our result suggest that these important comor-
bidities increase COVID-19 susceptibility and severity by
creating an airway microenvironment in which SARS-
CoV-2 can gain a foothold before an effective host re-
sponse is mounted. In SARS-CoV, a delayed innate im-
mune response in tandem with early robust viral
replication has been shown to lead to an enhanced late
pro-inflammatory state and more severe lung injury [73].
Recent evidence suggests that SARS-CoV-2 may also im-
pair early innate immune defenses through a host shut-
down process [74]. Although diseases of the metabolic
syndrome (e.g., cardiovascular conditions, obesity, and
diabetes) are often associated with increased systemic in-
flammation, there is evidence of an associated delay in
inflammatory cell recruitment to the lung during cor-
onavirus infection in animal models [75, 76]. Further
study of the lung-specific immune environment associ-
ated with these systemic diseases may be crucial to un-
derstanding susceptibility to severe SARS-CoV-2
infection.
In contrast to metabolic disorders, we find that in-

flammatory airway conditions increase gene expres-
sion indicative of increased innate and adaptive
immune responses, potentially priming individuals for
airway disease exacerbations in response to other vi-
ruses but not SARS-CoV-2. This is consistent with
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the large body of research showing that viruses trig-
ger the majority of airway disease exacerbations [77].
SARS-CoV-2, however, appears to have a different
immune profile and does not appear to be a major
trigger for airway disease exacerbations in clinical
studies [78, 79].
Furthermore, we show that host genetics has a bio-

logically meaningful effect on the expression of many
genes in the bronchial epithelium that may play an
important role in COVID-19, including genes of
interest as future drug targets that may not be cov-
ered by previous large eQTL catalogs from other tis-
sue types. While we did not observe significant
genetic regulatory effects for ACE2 and TMPRSS2,
the effect of regulatory variants on the expression of
some COVID-19-related genes can be as strong as
the expression changes induced by SARS-CoV-2 in-
fection, highlighting the possible important role of
host genetics in COVID-19. Most notably, 3p21.31
locus is robustly shown to be associated with
COVID-19 severity [5, 7, 8], but the functional mech-
anisms are unclear. The six candidate genes—
SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and
XCR1—were not highly expressed in bronchial epithe-
lium, except for LZTFL1, and did not have eQTLs in
our data set, suggesting that eQTL studies from other
tissues and cell types could provide more evidence for
the causative gene(s) of this genetic association.
Most severe cases of SARS-CoV-2 infection progress

to acute respiratory distress syndrome and respiratory
failure, thus regulatory variants for COVID-19-related
genes that also affect respiratory infections or immune-
related outcomes of a possible host response to a virus
serve as candidates for host genetic factors for COVID-
19, or its severity. We pinpoint multiple COVID-19-
interacting genes for which genetic regulatory variants
associate with immune- or respiratory-related outcomes,
including the interferon-induced transmembrane protein
3 (IFITM3), endoplasmic reticulum metallopeptidase 1
(ERMP1), and methylphosphate capping enzyme
(MEPCE), making them strong candidates for host gen-
etic risk factors.

Conclusions
Altogether, our findings of genetic and non-genetic
factors affecting the expression of COVID-19-related
genes in bronchial epithelium provide essential in-
sights for understanding inter-individual variation of
COVID-19 and developing therapeutic targets for
COVID-19.

Abbreviations
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-
19: Coronavirus disease 2019; SPIROMICS: SubPopulations and InteRmediate
Outcome Measures In COPD Study; COPD: Chronic obstructive pulmonary

disease; SARP: Severe Asthma Research Program; MAST: Mechanisms of
ASThma Study; eQTL: Expression quantitative trait locus; pheWAS: Phenome-
wide association study; RNA-seq: RNA-sequencing; WGS: Whole genome
sequencing; TOPMed: Trans-Omics for Precision Medicine; GTEx: Genotype-
Tissue Expression; FEV1: Forced expiratory volume in 1 s; ERS/ATS: European
Respiratory Society/American Thoracic Society; QC: Quality control;
dACE2: Truncated ACE2 transcript; FDR: False discovery rate; MAF: Minor allele
frequency; TSS: Transcription start site; eGene: Gene with statistically
significant eQTL; aFC: Allelic fold change; BMI: Body mass index;
GWAS: Genome-wide association study; LD: Linkage disequilibrium;
PP4: Posterior support for colocalization in coloc, defined as posterior
probability for observing an association with both traits driven by a shared
causal variant (hypothesis four); FC: Fold change; ARB: Angiotensin receptor
blockers; GSEA: Gene set enrichment analysis; IPA: Ingenuity Pathway
Analysis; EFO: Experimental factor ontology; ISG: Interferon stimulated genes

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13073-021-00866-2.

Additional file 1. Supplementary Methods.

Additional file 2: Table S1. Differential expression analysis of ACE2 in
relation to clinical variables (A) and genomic signatures (B) in SPIROMICS,
SARP, and MAST. Table S2. Top 100 genes co-expressed with ACE2 after
adjustments in SPIROMICS (A), SARP (B), and MAST (C). The genes in the
IL-17 signature are highlighted in yellow. Table S3. Canonical pathway
gene sets based on differentially downregulated genes between SARS-
CoV-2 infection and other viral illness using the Ingenuity Pathway Ana-
lysis canonical pathway function. Table S4. Association between canon-
ical pathway gene sets from Table S3 and comorbidities in SPIROMICS
(A), SARP (B), and MAST (C). Leading edge genes are enriched in associ-
ation with the given comorbidity. Table S5. Canonical pathway gene
sets based on genes enriched in association with each comorbidity using
the Ingenuity Pathway Analysis canonical pathway function. A – cardio-
vascular condition in SPIROMICS, B – hypertension in SPIROMICS, C –
obesity in SPIROMICS, D - hypertension in SARP, E – obesity in SARP.
Table S6. COVID-19-related genes from Blanco-Melo et al. 2020, Gassen
et al. 2020, Gordon et al. 2020, Hoffmann et al. 2020, Wang et al. 2020,
and COVID-19 Cell Atlas. Table S7. Summary statistics of eQTL mapping
in bronchial epithelium in SPIROMICS, including eQTL effect sizes, and
lookup analysis from GTEx and eQTLGen Consortium. Table S8. Lookup
of COVID-19-related genes with cis-eQTLs in bronchial epithelium from
GTEx v8. Effect size measured as allelic fold change (log2) is given for
every gene with FDR < 0.05 in GTEx v8 and its lead eQTL, or set to NA
otherwise. Table S9. Pathway analysis of 492 eGenes from SPIROMICS
not tested in GTEx Lung. Table S10. pheWAS of eQTLs for COVID-19-
related genes in bronchial epithelium with Phenoscanner v2. Table S11.
pheWAS of eQTLs for COVID-19-related genes in bronchial epithelium in
(A) non-Hispanic White individuals (N = 1980) and (B) Hispanic and non-
Hispanic, non-White individuals (N = 696) in SPIROMICS for 20 pheno-
types. Table S12. Results of the colocalization analysis of the eQTLs in
bronchial epithelium and COVID-19-relevant phenotypes.

Additional file 3: Figure S1. Associations between ACE2 gene
expression and COPD, asthma, steroid use, and race. Figure S2.
Associations between ACE2 gene expression and obesity. Figure S3.
Associations between ACE2 gene expression and hypertension, and use
of antihypertensives. Figure S4. Associations between age and ACE2
gene expression, and age and differential ACE2 exon usage. Figure S5.
Associations between age and smoking status, hypertension, sex, and
BMI in SPIROMICS. Figure S6. COVID-19 and other viral illness related
gene set enrichment analyses in association with comorbidities in SPIRO-
MICS, SARP, and MAST. Figure S7. Regulatory genetic effects of ACE2
and TMPRSS2, and the effect of smoking on TMPRSS2. Figure S8. Associa-
tions between COVID-19-related genes and comorbidities. Figure S9.
Replication of cis-eQTLs in GTEx. Figure S10. Regulatory genetic effects
of the candidate genes in the chr3 cluster associated with COVID-19. Fig-
ure S11. PheWAS associations for the 44 out of 108 lead cis-eQTLs asso-
ciated with COVID-19-related genes with Phenoscanner v2.

Kasela et al. Genome Medicine           (2021) 13:66 Page 13 of 17

https://doi.org/10.1186/s13073-021-00866-2
https://doi.org/10.1186/s13073-021-00866-2


Additional file 4: Supplementary Note. NHLBI Trans-Omics for Preci-
sion Medicine (TOPMed) Consortium Banner Authorship List.

Acknowledgements
The authors thank the SPIROMICS participants and participating physicians,
investigators, and staff for making this research possible. More information
about the study and how to access SPIROMICS data is available at www.
spiromics.org. The authors would like to acknowledge the University of
North Carolina at Chapel Hill BioSpecimen Processing Facility for sample
processing, storage, and sample disbursements (http://bsp.web.unc.edu/).
We would like to acknowledge the following current and former
investigators of the SPIROMICS sites and reading centers: Neil E Alexis, MD;
Wayne H Anderson, PhD; Mehrdad Arjomandi, MD; Igor Barjaktarevic, MD,
PhD; R Graham Barr, MD, DrPH; Patricia Basta, PhD; Lori A Bateman, MSc;
Surya P Bhatt, MD; Eugene R Bleecker, MD; Richard C Boucher, MD; Russell P
Bowler, MD, PhD; Stephanie A Christenson, MD; Alejandro P Comellas, MD;
Christopher B Cooper, MD, PhD; David J Couper, PhD; Gerard J Criner, MD;
Ronald G Crystal, MD; Jeffrey L Curtis, MD; Claire M Doerschuk, MD; Mark T
Dransfield, MD; Brad Drummond, MD; Christine M Freeman, PhD; Craig
Galban, PhD; MeiLan K Han, MD, MS; Nadia N Hansel, MD, MPH; Annette T
Hastie, PhD; Eric A Hoffman, PhD; Yvonne Huang, MD; Robert J Kaner, MD;
Richard E Kanner, MD; Eric C Kleerup, MD; Jerry A Krishnan, MD, PhD; Lisa M
LaVange, PhD; Stephen C Lazarus, MD; Fernando J Martinez, MD, MS;
Deborah A Meyers, PhD; Wendy C Moore, MD; John D Newell Jr, MD; Robert
Paine, III, MD; Laura Paulin, MD, MHS; Stephen P Peters, MD, PhD; Cheryl
Pirozzi, MD; Nirupama Putcha, MD, MHS; Elizabeth C Oelsner, MD, MPH;
Wanda K O’Neal, PhD; Victor E Ortega, MD, PhD; Sanjeev Raman, MBBS, MD;
Stephen I. Rennard, MD; Donald P Tashkin, MD; J Michael Wells, MD; Robert
A Wise, MD; and Prescott G Woodruff, MD, MPH.
The project officers from the Lung Division of the National Heart, Lung, and
Blood Institute were Lisa Postow, PhD, and Lisa Viviano, BSN; SPIROMICS was
supported by contracts from the NIH/NHLBI (HHSN268200900013C,
HHSN268200900014C, HHSN268200900015C, HHSN268200900016C,
HHSN268200900017C, HHSN268200900018C, HHSN268200900019C,
HHSN268200900020C), grants from the NIH/NHLBI (U01 HL137880 and U24
HL141762), and supplemented by contributions made through the
Foundation for the NIH and the COPD Foundation from AstraZeneca/
MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Phar-
maceuticals, Inc.; Chiesi Farmaceutici S.p.A.; Forest Research Institute, Inc.;
GlaxoSmithKline; Grifols Therapeutics, Inc.; Ikaria, Inc.; Novartis Pharmaceuti-
cals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals,
Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Bio-
pharma and Mylan.
Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program
was supported by the National Heart, Lung and Blood Institute (NHLBI). Gen-
ome Sequencing for “NHLBI TOPMed: SubPopulations and InteRmediate Out-
come Measures In COPD Study” (phs001927) was performed at the Broad
Institute Genomics Platform (HHSN268201600034I). Core support including
centralized genomic read mapping and genotype calling, along with variant
quality metrics and filtering were provided by the TOPMed Informatics Re-
search Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core
support including phenotype harmonization, data management, sample-
identity QC, and general program coordination were provided by the
TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract
HHSN268201800001I). We gratefully acknowledge the studies and partici-
pants who provided biological samples and data for TOPMed. A list of ban-
ner authors for the NHLBI Trans-Omics for Precision Medicine (TOPMed)
Consortium is provided in the Additional file 4.

Authors’ contributions
S.K., T.L., S.A.C., P.G.W., and V.E.O. designed the study. S.A.C., S.G., J.N., and S.N.
performed the differential expression and pathway analyses. S.K., M.M., A.P.,
and K.L.B. performed the eQTL analyses. V.E.O. and E.A. performed the
phenome-wide association analysis. I.Z.B., R.G.B., E.R.B., R.P.B., A.P.C., C.B.C.,
D.J.C., G.J.C., J.L.C., M.T.D., M.K.H., N.N.H., E.A.H., R.J.K., J.A.K., F.J.M., D.A.M., R.P.,
S.P.P., M.C., L.C.D., S.C.E., J.V.F., E.I., N.N.J., B.D.L., X.L., W.C.M., S.E.W., J.Z., and C.L.
were involved in the acquisition and processing of data. T.L. and S.A.C. super-
vised the work. S.K., T.L., and S.A.C. wrote the first draft. J.L.C., R.P.B., R.P.,
S.E.W., R.J.K., A.P.C., M.M., and K.L.B. contributed to the editing of the manu-
script. All authors approved the final version of the manuscript.

Funding
This work was funded by the following funding sources: R01HL142992
(V.E.O.), R01HL137880 (V.E.O.), F30HG011194 (M.M.), T32HL144442 (K.L.B., and
R.G.B.), R01MH106842 (T.L.), R01HL142028 (T.L., R.G.B., and S.K.), R01GM122924
(T.L.), UM1HG008901 (T.L.), R01GM124486 (T.L.), K23HL123778 (S.A.C.),
R01HL121774 (S.A.C.), and U01HL137880 (S.A.C.). The funders had no role in
study design, collection, analysis, and interpretation of data, or writing of the
manuscript.

Availability of data and materials
The RNA-seq data for SPIROMICS and SARP are deposited to dbGaP at acces-
sions phs001119.v1.p1 and phs001446, respectively. While awaiting data re-
lease via dbGaP, investigators may contact the corresponding authors or the
SPIROMICS and SARP studies at https://www.spiromics.org/spiromics/ and
http://www.severeasthma.org/home.html to discuss gaining access to the
data via the ancillary study mechanism for these studies. MAST RNA-seq data
are available at Gene Expression Omnibus (GEO) (accession number
GSE67472 [80]). TOPMed WGS freeze 9 data for the SPIROMICS cohort will be
available at dbGaP under accession number phs001927.
Full eQTL summary statistics for the 496 COVID-19-related genes generated
during the current study can be downloaded from the GitHub repository at
https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/
summary_stats [81]. eQTL mapping analyses code has been deposited to the
GitHub repository at https://github.com/LappalainenLab/spiromics-covid19-
eqtl [82].

Declarations

Ethics approval and consent to participate
The SPIROMICS study was approved by the Institutional Review Boards at
each cooperating institutions: Columbia University IRB 2 (AAAE9315),
University of Iowa IRB-01 (201308719), Johns Hopkins IRB-5 (NA_00035701),
UCLA Medical IRB 1 (MIRB1) (10001740/18-000403), University of Michigan
IRBMED B1 Board (HUM00036346/ HUM00141222), National Jewish Health
IRB (HS2678), UCSF IRB Parnassus Panel (10-03169), Temple University IRB A2
(21416), U of Alabama at Birmingham IRB #2 (120906004), University of Illinois
IRB #3 (2013-0939), University of Utah IRB Panel Review Board 5 (00027298/
00108836), Wake Forest University IRB #5 (00012805/00048727), UNC Non-
Biomedical IRB (10-0048), UCLA Medical IRB 1 (MIRB1) (18-000458), and Uni-
versity of Iowa IRB-01 (201003733). All participants provided written informed
consent. The SARP and MAST studies were approved by the appropriate in-
stitutional review board at the participating sites and all participants pro-
vided written informed consent. The research conformed to the principles of
the Helsinki Declaration.

Consent for publication
Not applicable

Competing interests
S.A.C. advises for AstraZeneca, GlaxoSmithKline, Glenmark Pharmaceuticals,
and Amgen, gave invited lectures to Sonovion and Genentech, and writes
for UpToDate. T.L. advises and has equity in Variant Bio and is a member of
the scientific advisory board of Goldfinch Bio. V.E.O. has served and currently
serves on Independent Data and Monitoring Committee for Regeneron and
Sanofi for COVID-19 therapeutic clinical trials unrelated to the current manu-
script. The remaining authors declare that they have no competing interests.

Author details
1New York Genome Center, New York, NY, USA. 2Department of Systems
Biology, Columbia University, New York, NY, USA. 3Department of Internal
Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic
Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA.
4Department of Medicine, Stanford University School of Medicine, Stanford,
CA, USA. 5Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine,
Department of Medicine, University of California San Francisco, San
Francisco, CA, USA. 6Department of Medicine, Columbia University Medical
Center, New York, NY, USA. 7Division of Pulmonary and Critical Care
Medicine, Department of Medicine, David Geffen School of Medicine,
University of California Los Angeles, Los Angeles, CA, USA. 8Division of
Genetics, Genomics and Precision Medicine, Department of Medicine,
University of Arizona, Tucson, AZ, USA. 9Division of Pulmonary Medicine,

Kasela et al. Genome Medicine           (2021) 13:66 Page 14 of 17

https://www.spiromics.org/spiromics/
https://www.spiromics.org/spiromics/
http://bsp.web.unc.edu/
https://www.spiromics.org/spiromics/
http://www.severeasthma.org/home.html
https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/summary_stats
https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/summary_stats
https://github.com/LappalainenLab/spiromics-covid19-eqtl
https://github.com/LappalainenLab/spiromics-covid19-eqtl


Department of Medicine, National Jewish Health, Denver, CO, USA. 10Division
of Pulmonary and Critical Care, University of Iowa, Iowa City, IA, USA.
11Department of Biostatistics, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA. 12Department of Thoracic Medicine and Surgery, Lewis
Katz School of Medicine at Temple University, Philadelphia, PA, USA.
13Division of Pulmonary and Critical Care Medicine, Department of Medicine,
University of Michigan Health System, Ann Arbor, MI, USA. 14Medicine
Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA. 15Division of
Pulmonary and Critical Care Medicine, Department of Medicine, Johns
Hopkins School of Medicine, Baltimore, MD, USA. 16Division of Physiologic
Imaging, Department of Radiology, University of Iowa Hospitals and Clinics,
Iowa City, IA, USA. 17Division of Pulmonary and Critical Care Medicine,
Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA.
18Department of Genetic Medicine, Weill Cornell Medicine, New York, NY,
USA. 19Division of Pulmonary, Critical Care, Sleep and Allergy, University of
Illinois at Chicago, Chicago, IL, USA. 20Division of Pulmonary, Allergy and
Critical Care Medicine, Department of Medicine, University of Alabama at
Birmingham, Birmingham, AL, USA. 21Division of Pulmonary and Critical Care
Medicine, Department of Internal Medicine, University of Utah, Salt Lake City,
UT, USA. 22Division of Pulmonary, Critical Care and Sleep Medicine,
Department of Internal Medicine, University of Kansas School of Medicine,
Kansas City, KS, USA. 23Division of Allergy, Pulmonary, and Critical Care
Medicine, Department of Medicine, University of Wisconsin-Madison,
Madison, WI, USA. 24Department of Pathobiology, Lerner Research Institute,
Cleveland Clinic, Cleveland, OH, USA. 25Division of Pulmonary and Critical
Care Medicine, Department of Medicine, Brigham and Women’s Hospital,
Boston, MA, USA. 26Department of Environmental and Occupational Health,
Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA,
USA. 27Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA. 28Division
of Infectious Diseases, University of California San Francisco, San Francisco,
CA, USA. 29Chan Zuckerberg Biohub, San Francisco, CA, USA.

Received: 10 November 2020 Accepted: 11 March 2021

References
1. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical

characteristics of COVID-19 in New York City. N Engl J Med. 2020;382(24):
2372–4. https://doi.org/10.1056/NEJMc2010419.

2. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al.
Factors associated with death in critically ill patients with coronavirus
disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436. https://doi.
org/10.1001/jamainternmed.2020.3596.

3. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al.
Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC
WHO Clinical Characterisation Protocol: prospective observational cohort
study. BMJ. 2020;369:m1985.

4. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al.
Factors associated with hospital admission and critical illness among 5279
people with coronavirus disease 2019 in New York City: prospective cohort
study. BMJ. 2020;369:m1966.

5. Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Somnez T, Coker D, et al.
Trans-ethnic analysis reveals genetic and non-genetic associations with
COVID-19 susceptibility and severity. Preprint at medRxiv https://doi.org/1
0.1101/2020.09.04.20188318. 2020.

6. Williams FM, Freydin M, Mangino M, Couvreur S, Visconti A, Bowyer RC,
et al. Self-reported symptoms of COVID-19 including symptoms most
predictive of SARS-CoV-2 infection, are heritable. Preprint at bioRxiv https://
doi.org/10.1101/2020.04.22.20072124. 2020.

7. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P,
et al. Genomewide association study of severe COVID-19 with
respiratory failure. N Engl J Med. 2020;383(16):1522–34. https://doi.org/1
0.1056/NEJMoa2020283.

8. COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a
global initiative to elucidate the role of host genetic factors in susceptibility
and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020;28:
715–8.

9. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al.
SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human
airway epithelial cells and is detected in specific cell subsets across tissues.
Cell. 2020;181:1016–1035.e19.

10. Bradding P, Richardson M, Hinks TSC, Howarth PH, Choy DF, Arron JR, et al.
ACE2, TMPRSS2, and furin gene expression in the airways of people with
asthma-implications for COVID-19. J Allergy Clin Immunol. 2020;146(1):208–
11. https://doi.org/10.1016/j.jaci.2020.05.013.

11. Zhang H, Rostami MR, Leopold PL, Mezey JG, O’Beirne SL, Strulovici-Barel Y,
et al. Expression of the SARS-CoV-2 ACE2 receptor in the human airway
epithelium. Am J Respir Crit Care Med. 2020;202(2):219–29. https://doi.org/1
0.1164/rccm.202003-0541OC.

12. Couper D, LaVange LM, Han M, Barr RG, Bleecker E, Hoffman EA, et al.
Design of the Subpopulations and Intermediate Outcomes in COPD Study
(SPIROMICS). Thorax. 2014;69(5):491–4. https://doi.org/10.1136/thoraxjnl-2
013-203897.

13. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al.
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
Preprint at bioRxiv https://doi.org/10.1101/563866. 2019.

14. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory
effects across human tissues. Science. 2020;369(6509):1318–30. https://doi.
org/10.1126/science.aaz1776.

15. Wells JM, Arenberg DA, Barjaktarevic I, Bhatt SP, Bowler RP, Christenson SA,
et al. Safety and tolerability of comprehensive research bronchoscopy in
chronic obstructive pulmonary disease. Results from the SPIROMICS
bronchoscopy substudy. Ann Am Thorac Soc. 2019;16(4):439–46. https://doi.
org/10.1513/AnnalsATS.201807-441OC.

16. Ricklefs I, Barkas I, Duvall MG, Cernadas M, Grossman NL, Israel E, et al. ALX
receptor ligands define a biochemical endotype for severe asthma. JCI
Insight. 2017;2(14). https://doi.org/10.1172/jci.insight.93534.

17. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al.
International ERS/ATS guidelines on definition, evaluation and treatment of
severe asthma. Eur Respir J. 2014;43(2):343–73. https://doi.org/10.1183/09031
936.00202013.

18. Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS,
Postma DS, et al. Asthma-COPD overlap. Clinical relevance of genomic
signatures of type 2 inflammation in chronic obstructive pulmonary
disease. Am J Respir Crit Care Med. 2015;191(7):758–66. https://doi.org/1
0.1164/rccm.201408-1458OC.

19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://
doi.org/10.1093/bioinformatics/bts635.

20. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
https://doi.org/10.1186/s13059-014-0550-8.

21. Leek J, Johnson W, Parker H, Fertig E, Jaffe A, Zhang Y, et al. sva: surrogate
variable analysis. 2020. R package version 3.36.0.

22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):
2078–9. https://doi.org/10.1093/bioinformatics/btp352.

23. Onabajo OO, Banday AR, Stanifer ML, Yan W, Obajemu A, Santer DM, et al.
Interferons and viruses induce a novel truncated ACE2 isoform and not the
full-length SARS-CoV-2 receptor. Nat Genet. 2020;52(12):1283–93. https://doi.
org/10.1038/s41588-020-00731-9.

24. Mancini E, Rabinovich A, Iserte J, Yanovsky M, Chernomoretz A. ASpli:
analysis of alternative splicing using RNA-Seq. 2020. R package version
1.14.0.

25. Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Calfee CS, et al. Upper
airway gene expression differentiates COVID-19 from other acute respiratory
illnesses and reveals suppression of innate immune responses by SARS-CoV-
2. Preprint at medRxiv https://doi.org/10.1101/2020.05.18.20105171. 2020.

26. Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis.
Preprint at bioRxiv https://doi.org/10.1101/060012. 2019.

27. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-
gene correlation. Nucleic Acids Res. 2012;40(17):e133. https://doi.org/10.1
093/nar/gks461.

28. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S,
et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked
by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.

29. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A
SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
Nature. 2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.

30. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,
et al. Imbalanced host response to SARS-CoV-2 drives development of
COVID-19. Cell. 2020;181:1036–1045.e9.

Kasela et al. Genome Medicine           (2021) 13:66 Page 15 of 17

https://doi.org/10.1056/NEJMc2010419
https://doi.org/10.1001/jamainternmed.2020.3596
https://doi.org/10.1001/jamainternmed.2020.3596
https://doi.org/10.1101/2020.09.04.20188318
https://doi.org/10.1101/2020.09.04.20188318
https://doi.org/10.1101/2020.04.22.20072124
https://doi.org/10.1101/2020.04.22.20072124
https://doi.org/10.1056/NEJMoa2020283
https://doi.org/10.1056/NEJMoa2020283
https://doi.org/10.1016/j.jaci.2020.05.013
https://doi.org/10.1164/rccm.202003-0541OC
https://doi.org/10.1164/rccm.202003-0541OC
https://doi.org/10.1136/thoraxjnl-2013-203897
https://doi.org/10.1136/thoraxjnl-2013-203897
https://doi.org/10.1101/563866
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1513/AnnalsATS.201807-441OC
https://doi.org/10.1513/AnnalsATS.201807-441OC
https://doi.org/10.1172/jci.insight.93534
https://doi.org/10.1183/09031936.00202013
https://doi.org/10.1183/09031936.00202013
https://doi.org/10.1164/rccm.201408-1458OC
https://doi.org/10.1164/rccm.201408-1458OC
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/s41588-020-00731-9
https://doi.org/10.1038/s41588-020-00731-9
https://doi.org/10.1101/2020.05.18.20105171
https://doi.org/10.1101/060012
https://doi.org/10.1093/nar/gks461
https://doi.org/10.1093/nar/gks461
https://doi.org/10.1038/s41586-020-2286-9


31. Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, et al.
Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206,
and niclosamide as putative antiviral therapeutics. Preprint at bioRxiv
https://doi.org/10.1101/2020.04.15.997254. 2020.

32. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARS-CoV-2
invades host cells via a novel route: CD147-spike protein. Preprint at bioRxiv
https://doi.org/10.1101/2020.03.14.988345. 2020.

33. Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. https://
doi.org/10.1186/gb-2010-11-3-r25.

34. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics.
2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

35. Taylor-Weiner A, Aguet F, Haradhvala NJ, Gosai S, Anand S, Kim J, et al.
Scaling computational genomics to millions of individuals with GPUs.
Genome Biol. 2019;20(1):228. https://doi.org/10.1186/s13059-019-1836-7.

36. Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for
complex non-genetic factors in gene expression levels greatly increases
power in eQTL studies. PLoS Comput Biol. 2010;6(5):e1000770. https://doi.
org/10.1371/journal.pcbi.1000770.

37. Mohammadi P, Castel SE, Brown AA, Lappalainen T. Quantifying the
regulatory effect size of cis-acting genetic variation using allelic fold change.
Genome Res. 2017;27(11):1872–84. https://doi.org/10.1101/gr.216747.116.

38. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 2017;18(1):220. https://doi.org/10.11
86/s13059-017-1349-1.

39. Davis JR, Fresard L, Knowles DA, Pala M, Bustamante CD, Battle A, et al. An
efficient multiple-testing adjustment for eQTL studies that accounts for
linkage disequilibrium between variants. Am J Hum Genet. 2016;98(1):216–
24. https://doi.org/10.1016/j.ajhg.2015.11.021.

40. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc
Natl Acad Sci U S A. 2003;100(16):9440–5. https://doi.org/10.1073/pnas.153
0509100.

41. Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S, Wucher V,
et al. Cell type–specific genetic regulation of gene expression across human
tissues. Science. 2020;369(6509):eaaz8528. https://doi.org/10.1126/science.aa
z8528.

42. Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al.
Unraveling the polygenic architecture of complex traits using blood eQTL
metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367. 2018.

43. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler:
a web server for functional enrichment analysis and conversions of gene
lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8. https://doi.org/1
0.1093/nar/gkz369.

44. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a
database of human genotype-phenotype associations. Bioinformatics. 2016;32(20):
3207–9. https://doi.org/10.1093/bioinformatics/btw373.

45. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al.
PhenoScanner V2: an expanded tool for searching human genotype-
phenotype associations. Bioinformatics. 2019;35(22):4851–3. https://doi.org/1
0.1093/bioinformatics/btz469.

46. Wallace C. Eliciting priors and relaxing the single causal variant assumption
in colocalisation analyses. PLoS Genet. 2020;16(4):e1008720. https://doi.org/1
0.1371/journal.pgen.1008720.

47. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-
CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial
transient secretory cells. EMBO J. 2020;39:e105114.

48. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al.
Cigarette smoke exposure and inflammatory signaling increase the
expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev
Cell. 2020;53:514–529.e3.

49. Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases
the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir
Crit Care Med. 2020;201(12):1557–9. https://doi.org/10.1164/rccm.202003-
0693LE.

50. Aliee H, Massip F, Qi C, de Biase MS, van Nijnatten JL, Kersten ETG, et al.
Determinants of SARS-CoV-2 receptor gene expression in upper and lower
airways. Preprint at medRxiv https://doi.org/10.1101/2020.08.31.20169946.
2020.

51. Christenson SA, van den Berge M, Faiz A, Inkamp K, Bhakta N, Bonser LR,
et al. An airway epithelial IL-17A response signature identifies a steroid-

unresponsive COPD patient subgroup. J Clin Invest. 2019;129(1):169–81.
https://doi.org/10.1172/JCI121087.

52. Bhakta NR, Christenson SA, Nerella S, Solberg OD, Nguyen CP, Choy DF,
et al. IFN-stimulated gene expression, type 2 inflammation, and
endoplasmic reticulum stress in asthma. Am J Respir Crit Care Med. 2018;
197(3):313–24. https://doi.org/10.1164/rccm.201706-1070OC.

53. Ng KW, Attig J, Bolland W, Young GR, Major J, Wrobel AG, et al. Tissue-
specific and interferon-inducible expression of nonfunctional ACE2 through
endogenous retroelement co-option. Nat Genet. 2020;52(12):1294–302.
https://doi.org/10.1038/s41588-020-00732-8.

54. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex
differences in immune responses that underlie COVID-19 disease outcomes.
Nature. 2020;588(7837):315–20. https://doi.org/10.1038/s41586-020-2700-3.

55. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, et al.
Dipeptidyl peptidase 4 is a functional receptor for the emerging human
coronavirus-EMC. Nature. 2013;495(7440):251–4. https://doi.org/10.1038/na
ture12005.

56. Lopera Maya EA, van der Graaf A, Lanting P, van der Geest M, Fu J, Swertz
M, et al. Lack of association between genetic variants at ACE2 and TMPRSS2
genes involved in SARS-CoV-2 infection and human quantitative
phenotypes. Front Genet. 2020;11:613. https://doi.org/10.3389/fgene.2020.
00613.

57. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne
CA, et al. New genetic signals for lung function highlight pathways and
chronic obstructive pulmonary disease associations across multiple
ancestries. Nat Genet. 2019;51(3):481–93. https://doi.org/10.1038/s41588-018-
0321-7.

58. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The allelic
landscape of human blood cell trait variation and links to common
complex disease. Cell. 2016;167:1415–1429.e19.

59. Huang I-C, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, et al.
Distinct patterns of IFITM-mediated restriction of filoviruses, SARS
coronavirus, and influenza A virus. PLoS Pathog. 2011;7(1):e1001258. https://
doi.org/10.1371/journal.ppat.1001258.

60. Daniloski Z, Jordan TX, Wessels HH, Hoagland DA, Kasela S, Legut M, et al.
Identification of required host factors for SARS-CoV-2 infection in human
cells. Cell. 2021;184(1):92-105.e16. https://doi.org/10.1016/j.cell.2020.10.030.

61. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al.
OpenSAFELY: factors associated with COVID-19 death in 17 million patients.
Nature. 2020;584(7821):430–6. https://doi.org/10.1038/s41586-020-2521-4.

62. Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, et al.
Platelet gene expression and function in patients with COVID-19. Blood.
2020;136(11):1317–29. https://doi.org/10.1182/blood.2020007214.

63. Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, et al. Platelets can
associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ
Res. 2020;127(11):1404–18. https://doi.org/10.1161/CIRCRESAHA.120.317703.

64. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology
of COVID-19: current state of the science. Immunity. 2020;52(6):910–41.
https://doi.org/10.1016/j.immuni.2020.05.002.

65. Liu Y, Sun W, Guo Y, Chen L, Zhang L, Zhao S, et al. Association between
platelet parameters and mortality in coronavirus disease 2019: retrospective
cohort study. Platelets. 2020;31(4):490–6. https://doi.org/10.1080/09537104.2
020.1754383.

66. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury
with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA
Cardiol. 2020;5(7):802–10. https://doi.org/10.1001/jamacardio.2020.0950.

67. Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT,
et al. COVID-19–related genes in sputum cells in asthma. Relationship to
demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;
202(1):83–90. https://doi.org/10.1164/rccm.202003-0821OC.

68. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon
SD. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-
19. N Engl J Med. 2020;382(17):1653–9. https://doi.org/10.1056/NEJMsr2
005760.

69. Wenzl T. Smoking and COVID-19: did we overlook representativeness? Tob
Induc Dis. 2020;18:89.

70. Patanavanich R, Glantz SA. Smoking is associated with COVID-19
progression: a meta-analysis. Nicotine Tob Res Off J Soc Res Nicotine Tob.
2020;22(9):1653–6. https://doi.org/10.1093/ntr/ntaa082.

71. Hopkinson NS, Rossi N, El-Sayed Moustafa J, Laverty AA, Quint JK, Freidin M,
et al. Current smoking and COVID-19 risk: results from a population

Kasela et al. Genome Medicine           (2021) 13:66 Page 16 of 17

https://doi.org/10.1101/2020.04.15.997254
https://doi.org/10.1101/2020.03.14.988345
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/s13059-019-1836-7
https://doi.org/10.1371/journal.pcbi.1000770
https://doi.org/10.1371/journal.pcbi.1000770
https://doi.org/10.1101/gr.216747.116
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1016/j.ajhg.2015.11.021
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1126/science.aaz8528
https://doi.org/10.1126/science.aaz8528
https://doi.org/10.1101/447367
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/bioinformatics/btw373
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1371/journal.pgen.1008720
https://doi.org/10.1371/journal.pgen.1008720
https://doi.org/10.1164/rccm.202003-0693LE
https://doi.org/10.1164/rccm.202003-0693LE
https://doi.org/10.1101/2020.08.31.20169946
https://doi.org/10.1172/JCI121087
https://doi.org/10.1164/rccm.201706-1070OC
https://doi.org/10.1038/s41588-020-00732-8
https://doi.org/10.1038/s41586-020-2700-3
https://doi.org/10.1038/nature12005
https://doi.org/10.1038/nature12005
https://doi.org/10.3389/fgene.2020.00613
https://doi.org/10.3389/fgene.2020.00613
https://doi.org/10.1038/s41588-018-0321-7
https://doi.org/10.1038/s41588-018-0321-7
https://doi.org/10.1371/journal.ppat.1001258
https://doi.org/10.1371/journal.ppat.1001258
https://doi.org/10.1016/j.cell.2020.10.030
https://doi.org/10.1038/s41586-020-2521-4
https://doi.org/10.1182/blood.2020007214
https://doi.org/10.1161/CIRCRESAHA.120.317703
https://doi.org/10.1016/j.immuni.2020.05.002
https://doi.org/10.1080/09537104.2020.1754383
https://doi.org/10.1080/09537104.2020.1754383
https://doi.org/10.1001/jamacardio.2020.0950
https://doi.org/10.1164/rccm.202003-0821OC
https://doi.org/10.1056/NEJMsr2005760
https://doi.org/10.1056/NEJMsr2005760
https://doi.org/10.1093/ntr/ntaa082


symptom app in over 2.4 million people. Thorax. 2021;thoraxjnl-2020-
216422. https://doi.org/10.1136/thoraxjnl-2020-216422.

72. Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE, Moore LSP,
et al. Cardiometabolic traits, sepsis and severe COVID-19: a Mendelian
randomization investigation. Circulation. 2020;142(18):1791–3. https://doi.
org/10.1161/CIRCULATIONAHA.120.050753.

73. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK,
et al. Dysregulated type I interferon and inflammatory monocyte-
macrophage responses cause lethal pneumonia in SARS-CoV-infected
mice. Cell Host Microbe. 2016;19(2):181–93. https://doi.org/10.1016/j.
chom.2016.01.007.

74. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M,
et al. Structural basis for translational shutdown and immune evasion by
the Nsp1 protein of SARS-CoV-2. Science. 2020;369(6508):1249–55. https://
doi.org/10.1126/science.abc8665.

75. Smith M, Honce R, Schultz-Cherry S. Metabolic syndrome and viral
pathogenesis: lessons from influenza and coronaviruses. J Virol. 2020;94(18).
https://doi.org/10.1128/JVI.00665-20.

76. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes
results in immune dysregulation and enhanced disease severity
following MERS-CoV infection. JCI Insight. 2019;4(20). https://doi.org/1
0.1172/jci.insight.131774.

77. Kurai D, Saraya T, Ishii H, Takizawa H. Virus-induced exacerbations in asthma
and COPD. Front Microbiol. 2013;4:293.

78. Grandbastien M, Piotin A, Godet J, Abessolo-Amougou I, Ederlé C, Enache I,
et al. SARS-CoV-2 pneumonia in hospitalized asthmatic patients did not
induce severe exacerbation. J Allergy Clin Immunol Pract. 2020;8(8):2600–7.
https://doi.org/10.1016/j.jaip.2020.06.032.

79. Beurnier A, Jutant E-M, Jevnikar M, Boucly A, Pichon J, Preda M, et al.
Characteristics and outcomes of asthmatic patients with COVID-19
pneumonia who require hospitalisation. Eur Respir J. 2020;56(5):2001875.
https://doi.org/10.1183/13993003.01875-2020.

80. Christenson SA, Arron JR, Steiling K, van den Berge M, Hijazi K, Hiemstra PS,
et al. Airway epithelial gene expression in asthma versus healthy controls.
GSE67472. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE67472 (2015).

81. Kasela S. Full eQTL summary statistics for the 496 COVID-19-related genes.
Github. https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/ma
ster/eqtl/summary_stats (2020).

82. Kasela S. eQTL mapping analysis code. Github. https://github.com/Lappala
inenLab/spiromics-covid19-eqtl (2020).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kasela et al. Genome Medicine           (2021) 13:66 Page 17 of 17

https://doi.org/10.1136/thoraxjnl-2020-216422
https://doi.org/10.1161/CIRCULATIONAHA.120.050753
https://doi.org/10.1161/CIRCULATIONAHA.120.050753
https://doi.org/10.1016/j.chom.2016.01.007
https://doi.org/10.1016/j.chom.2016.01.007
https://doi.org/10.1126/science.abc8665
https://doi.org/10.1126/science.abc8665
https://doi.org/10.1128/JVI.00665-20
https://doi.org/10.1172/jci.insight.131774
https://doi.org/10.1172/jci.insight.131774
https://doi.org/10.1016/j.jaip.2020.06.032
https://doi.org/10.1183/13993003.01875-2020
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67472
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67472
https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/summary_stats
https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/summary_stats
https://github.com/LappalainenLab/spiromics-covid19-eqtl
https://github.com/LappalainenLab/spiromics-covid19-eqtl

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study population
	SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS)
	Severe Asthma Research Program (SARP)
	Mechanisms of ASThma study (MAST)

	Whole genome sequencing data
	Derivation of airway epithelial transcriptomic data in SPIROMICS, SARP, and MAST
	Differential expression analysis of ACE2 in relation to host/environmental factors
	Differential exon usage
	Gene set enrichment analysis of expression changes induced by COVID-19
	COVID-19-related genes
	Expression quantitative trait mapping
	Replication of cis-eQTLs and pathway analysis
	pheWAS of lead COVID-19 cis-eQTLs in SPIROMICS and querying PhenoScanner
	Colocalization analysis

	Results
	Smoking, obesity, and hypertension are associated with increased airway epithelial expression of functional ACE2 isoforms
	Obesity, hypertension, and cardiovascular disease are associated with a relative COVID-19-relevant immunosuppression at the airway epithelium
	Host genetics has a biologically meaningful effect on the airway epithelial expression of many COVID-19-related genes
	Regulatory variants for COVID-19-related genes as host risk factors for COVID-19 susceptibility

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

